Identification and Function of Disulfide Bridges in the Extracellular Domains of the Angiotensin II Type 2 Receptor[†]

Jennifer N. Heerding,[‡] John Hines,^{‡,§} Steven J. Fluharty,^{‡,§,||} and Daniel K. Yee*,[‡]

Departments of Animal Biology and Pharmacology and Institute for Neurological Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6046

Received December 11, 2000; Revised Manuscript Received April 20, 2001

ABSTRACT: The angiotensin II (AngII) receptor family is comprised of two subtypes, type 1 (AT₁) and type 2 (AT₂). Although sharing low homology (only 34%), mutagenesis has identified some key residues that are conserved between both subtypes, including four extracellular cysteines. Previous AT₁ mutagenesis demonstrated that the cysteines form two disulfide bonds, one linking the first and second extracellular loops and another connecting the amino terminus to the third extracellular loop. The importance of these AT₁ disulfides in ligand binding is supported by the effect of dithiothreitol (DTT). DTT breaks disulfide bonds, thereby strongly inhibiting ligand binding in AT₁ receptors. Despite retaining the same cysteines, AT₂ receptor ligand binding is paradoxically enhanced by DTT. Thus, we constructed a series of AT₂ cysteine mutations, either individually or paired, to establish the role of the cysteines and the source of DTT's effects. The AT₂ cysteine mutants surprisingly confirmed that the cysteines form disulfide bonds in the same manner as in the AT₁ subtype. However, breaking the AT₂ disulfide bridges yielded two responses. As in AT₁ receptors, mutations disrupting the disulfide bond between the first and second extracellular loops reduced AT₂ binding by 4-fold. In contrast, mutations breaking the disulfide bridge between the amino terminus and the third extracellular loop increased AT₂ binding, mimicking DTT's effect on this subtype. Further analysis of AT₁/AT₂ chimeric exchange mutants of these domains suggested that the AT₂ amino terminus and third extracellular loop may possess latent binding epitopes that are only uncovered after DTT exposure.

Angiotensin II (AngII)¹ is an octapeptide involved in body fluid homeostasis. Its behavioral and physiological effects include increased salt appetite, increased thirst, and a pressor response. The peptide exerts its actions by binding to cell surface receptors (1). At least two main subtypes of AngII receptors, referred to as type 1 (AT₁) and type 2 (AT₂), have been identified. Although the two subtypes bind AngII with identical affinities (3-5 nM), development of subtypeselective ligands has aided in the pharmacological and functional analyses of these distinct receptors (2). The AT₁ receptor binds the AT₁-specific nonpeptide antagonist losartan with high affinity, whereas the AT₂ receptor binds with high affinity the AT₂-specific ligands PD123319 and CGP42112A. With the cloning of these subtypes (3-6), more detailed structural information on these receptors has become available. Interestingly, although the two subtypes bind AngII with identical affinities, they share a relatively low 34% amino acid homology.

Use of molecular biological techniques to introduce specific mutations into proteins has proven to be an invaluable research strategy in the analysis of protein structure and function. With respect to GPCRs, this strategy has been extensively used to map the structural elements that define ligand binding, G-protein coupling, and receptor activation of several receptor systems. In the study of AngII receptors, mutagenesis experiments have been conducted primarily on the AT₁ subtype. Thus far, these studies have identified several AT₁ binding epitopes for AngII and its related analogues (7-13), as well as for the AT₁-selective antagonist losartan (14). In addition, other investigators have mapped critical residues and protein regions that are important in receptor activation and G-protein coupling for this subtype (15-20). The mutational data have led to several computer models of how AngII and its related ligands bind to the AT_1 receptor (9, 21). In contrast, analogous information on the AT₂ subtype has been lacking. Moreover, since the two subtypes share a relatively low level of homology, the extent to which the AT₁ mutagenesis and modeling data are applicable to the AT2 subtype remains equivocal. While it may be expected that conserved residues explain shared receptor properties, namely, the binding of AngII and its analogues, our previous work has demonstrated that the binding of AngII is much more complex. While the receptors do share some common AngII binding epitopes, other contact sites that are unique to each subtype also must exist (22-25).

[†] Research supported by National Institutes of Health Grants HL58792 and MH43787.

To whom correspondence should be addressed.

[‡] Department of Animal Biology, University of Pennsylvania.

Begin Department of Pharmacology, University of Pennsylvania.

Institute for Neurological Sciences, University of Pennsylvania.

¹ Abbreviations: AngII, angiotensin II; AT₁ receptor, angiotensin II type 1 receptor; AT2 receptor, angiotensin II type 2 receptor; DTT, dithiothreitol; SARILE, [Sar1,Ile8]angiotensin II; GPCR, G-proteincoupled receptor; NT, amino terminus; ECL3, third extracellular loop; SOE, splicing by overlap extension.

An aspect of the AT_1 receptor that has been examined by mutagenesis involves the four extracellular cysteine residues, one in the amino terminus and one in each of the three extracellular loops. When the cysteine residues were mutated, either individually or in combination, ligand binding to the AT_1 receptor diminished by 10-fold (8, 10). Results obtained from the paired cysteine mutants led to the assignment of two disulfide bridges connecting these cysteine residues: one bridge between the first and second extracellular loops and a second bond between cysteines in the amino terminus and the third extracellular loop. Indeed, these mutational data seem to provide the molecular basis for the observed inhibition of ligand binding in AT₁ receptors by the reducing agent dithiothreitol (DTT). DTT disrupts disulfide bridges, therefore breaking the putative AT₁ disulfides and rendering the receptor unable to bind AngII (10). Surprisingly, while these four extracellular cysteine residues are conserved in the AT₂ receptor subtype, the presence of DTT paradoxically enhances the affinity of this subtype for AngII (5, 6, 26). This suggested differences in the manner that the conserved cysteine residues contribute toward binding activity in the two subtypes. We sought to more clearly identify the role of these homologous cysteine residues in the AT₂ subtype and investigate the basis of the unique AT₂ response to DTT. To address these issues, a series of AT₂ point mutations of the key cysteines, either individually or paired, as well as a series of AT₁/AT₂ receptor chimeras were generated. Their ligand binding properties and the response to DTT were then analyzed.

EXPERIMENTAL PROCEDURES

Materials. Monoiodinated ¹²⁵I-AngII was obtained from Amersham Corp. (Arlington Heights, IL). Unlabeled AngII and related peptides, HEPES, aprotinin, 1,10-*o*-phenanthroline, and poly(ethylenimine) (PEI) were from Sigma Chemical Co. (St. Louis, MO). All other chemicals and reagents were purchased from Fisher Scientific (Pittsburgh, PA) and were of the highest obtainable grade.

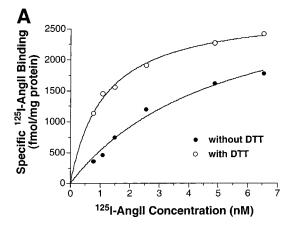
Mutagenesis Techniques. All mutations, including the substitutions of Cys³⁵, Cys¹¹⁷, Cys¹⁹⁵, and Cys²⁹⁰ to alanine in the AT₂ receptor and all AT₁/AT₂ chimeric receptors, were achieved by a modified version of the splicing by overlap extension (SOE) technique (27). This procedure involved using the polymerase chain reaction (PCR) in two steps: generation of individual fragments followed by splicing of the fragments. Briefly, the two fragments were first amplified by PCR using specially designed complementary and overlapping primers that introduced the desired mutation. The two fragments were then used along with distal primers in a PCR reaction to produce the final product. As a refinement to enhance the fidelity of SOE, a small amount of Pfu DNA polymerase (1:100 Pfu:Taq) was added to the PCR reactions.

Either wild-type AT_1 or AT_2 cDNA, which have previously been isolated from the murine neuroblastoma N1E-115 cell line (26, 28), served as the template in these PCRs depending on the appropriate primers. Primers used to construct the AT_2 cysteine point mutants are as follows: AT_2 -C35A mutant (forward primer = 5'-CGCCTTTAATGCCT-CACACAAACCATC-3' and reverse primer = 5'-GTTTGT-GTGAGGCATTAAAGGCGGACTC-3'), AT_2 C117A mutant (forward primer = 5'-ACCTGTGATGGCCAAAGTGTTTG-

GTTC-3' and reverse primer = 5'-CAAACACTTTGGC-CATCACAGGTCCAAA-3'), AT2C195A mutant (forward primer = 5'-TGTGAATGCTGCTATTATGGCTTTCCC-3' and reverse primer = 5'-AGCCATAATAGCAGCATTCA-CACCTAA-3'), and AT₂C290A mutant (forward primer =5'-CATTAATAGCGCTGAAGTTATAGCAGTC-3' and reverse primer = 5'-CTATAACTTCAGCGCTATTAAT-GATACC-3'). The [AT₁NT]AT₂ chimera was constructed using the forward primer 5'-CACAGTTACATATTGGAAG-CAATTCCTGTTCTC-3' and the reverse primer 5'-TGCT-TCCAATATGTAACTGTGCCTGCCAGC-3'. The [AT₁-ECL3]AT₂ chimera was made using the SOE procedure in three steps. First, the AT₁ receptor sequence from the third extracellular loop to its carboxyl tail was added to an AT₂ receptor using the primers 5'-GACCTTCTTGGATGTGCT-GATTCAGCTGGG-3' (forward primer) and 5'-CAGCA-CATCCAAGAAGGTCAGAAC-3' (reverse primer). The protein region from the seventh transmembrane domain to the cytoplasmic tail was then substituted with the AT₁ receptor sequence using primers 5'-CGTGGACACTGCACTTC-CTTTTGCCATCC-3' (forward primer) and 5'-GGAAGT-GCAGTGTCCACGATGTCG-3' (reverse primer). The [AT₂-ECL3]AT₁ chimera was also made in three steps. First, the AT₂ receptor sequence from the third extracellular loop to its carboxyl tail was added to an AT₁ receptor using the primers 5'-CACATTCCTGGATGCTCTGACCTGGAT-3' (forward primer) and 5'-CAGAGCATCCAGGAATGTGAA-TATTT-3' (reverse primer). The protein region from the seventh transmembrane domain to the cytoplasmic tail was then substituted with the AT₁ receptor sequence using primers 5'-CATTGACCTGGCCATGCCCATAACCATC-3' (forward primer) and 5'-GGGCATGGCCAGGTCAATGACT-GCTAT-3' (reverse primer). Generation of the AT₂ aminoterminal partial truncation mutant ([del 1-16]AT₂) utilized the primer 5'-GCGGGATCCAAAATGAGCCGTCCTT-TTGATAATCTCAACGC-3' in a single PCR session using wild-type AT₂ cDNA as a template. The AT₂C35A/C290A and AT₂C117A/C195A double point mutants as well as the [AT₁NT/ECL3]AT₂ combined chimeric receptor were created by a series of restriction enzyme digests and subsequent ligation of appropriate portions of receptor from other previously generated AT₂ cysteine mutants or AT₁/AT₂ chimeras.

Reaction conditions for all PCR were 30 cycles of 94 °C (1 min), 55 °C (1 min), and 72 °C (1 min). Following purification using Wizard PCR Preps (Promega, Madison, WI), the two fragments were combined in the overlap extension reaction using the same PCR conditions as described above. Following production of the full-length mutant receptors, the cDNA constructs were subcloned into the expression vector pCR3 (Invitrogen, Carlsbad, CA). Complete DNA sequencing for each mutant was then performed in order to verify the desired mutations as well as to ensure that PCR misincorporations did not occur within the cDNA constructs.

Cell Culture Techniques. COS-1 cells were grown on T150 plastic plates in DMEM (high glucose) supplemented with 10% fetal calf serum and 2 mM glutamine, 50 units/mL penicillin, and 50 μ g/mL streptomycin in a humidified atmosphere of 5% CO₂ and 95% O₂ at 37 °C.


Cell Membrane Preparation. Wild-type and mutant AngII receptor cDNAs were transiently transfected into COS cells

using LipofectAMINE (GIBCO/BRL) following the manufacturer's protocol. Two days after transfection, cell membranes were prepared from the transfected cells as previously described (29). Briefly, medium was removed from culture dishes, and cells were rinsed three times in ice-cold 20 mM Tris-HCl (pH 7.4) and 150 mM NaCl. Cells were then incubated for 10-15 min at 4 °C in 20 mM Tris-HCl (pH 7.4), removed with a rubber policeman, and homogenized with a Dounce homogenizer. Following centrifugation at 48000g for 20 min, the membrane pellet was washed once in assay buffer, a solution of 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 5 mM MgCl₂, 0.2% heat-inactivated BSA, 0.3 TIU/mL aprotinin, and 100 μ g/mL 1,10-phenanthroline. Following a second centrifugation at 48000g for 20 min, the final membrane pellet was resuspended in assay buffer at a protein concentration of 1 mg/mL as determined by the BCA protein assay (Pierce, Rockford, IL).

Radioligand Binding Assays. Radioligand binding assays were performed as described previously (29). In brief, the binding assays were initiated by the addition of 100 μ L of membrane protein (30 or 50 μ g) to 150 μ L of assay buffer containing various concentrations of radioligand (125I-AngII) and unlabeled AT2 receptor agonists and antagonists in the presence and absence of 10 mM DTT. Saturation isotherms used at least six concentrations of ¹²⁵I-AngII, ranging from 0.2 to 6.0 nM. Competition assays used 0.68 nM ¹²⁵I-AngII and unlabeled competitor in concentrations ranging from 10^{-11} to 10^{-6} M. The incubations continued for 60 min at 25 °C and were terminated by rapid dilution with 5 mM Tris-HCl (pH 7.4) and 150 mM NaCl and vacuum filtration on glass-fiber filters presoaked with 0.3% PEI. The glassfiber filters were then counted in an LKB γ counter (counting efficiency of 60%). Specific binding was defined as binding in the presence of 1 μ M unlabeled AngII.

Inositol Trisphosphate Assay. Transfected COS cells were loaded with [3 H]inositol (4.5 μ Ci/mL D-MEM) for 18 h prior to assay. Transfected cells were then stimulated with agonist for 30 s, rinsed once with ice-cold phosphate-buffered saline, and then rapidly lysed in 1 mL of 10% trichloroacetic acid. Insoluble materials were pelleted at 16000g. The pellets were solubilized in 500 μ L of 1% sodium dodecyl sulfate in 0.1 M NaOH for protein quantification. The supernatant from each lysate was extracted five times with 2 volumes of watersaturated ether. Following the final extraction, the aqueous layers were neutralized by addition of sodium bicarbonate and EDTA to final concentrations of 6 and 15 mM, respectively. The aqueous supernatants were added to 1 mL AG1-X8 anion-exchange resin columns (Bio-Rad Labs, Hercules, CA), and inositol phosphates were separated by stepwise elution with increasing concentrations (0-1 M) of ammonium formate in 0.1 M formic acid (30). The amount of IP3 eluted from each column was quantitated by liquid scintillation counting in Tru-Count scintillation cocktail (IN/US Systems, Inc., Tampa, FL).

Data Analysis. All data were analyzed using GraphPad Prism software (GraphPad Software, Inc., San Diego, CA). The results are presented as means \pm standard error. Statistical analysis was performed with the aid of SuperA-NOVA software (Abacus Concepts, Berkeley, CA). ANOVA was performed on the binding data, and the Student-Newman-Keuls test was used as a post hoc test. Unless specifically noted, the significance level was set at $P \le 0.01$.

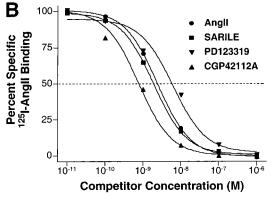


FIGURE 1: Representative binding curves for the angiotensin II type 2 (AT₂) receptor. Using radioligand binding assays with ¹²⁵I-AngII, extensive pharmacological characterizations were conducted for the AT₂ receptor and for each mutant receptor. (A) A representative saturation isotherm is shown for the wild-type AT₂ receptor. The binding data were subjected to the curve fitting using GraphPad Prism software (GraphPad Software, Inc., San Diego, CA) in order to determine affinity (K_d) and expression level (B_{max}) values. Similar procedures were used to generate the pharmacological data for all receptors shown in Tables 1 and 3. (B) A representative competition analysis is shown for the wild-type AT₂ receptor. Unlabeled competitors AngII, SARILE, CGP42112A, and PD123319 were used to displace 125I-AngII binding. Using GraphPad Prism software, the binding data were analyzed to determine the respective K_i values for each competing ligand. Similar procedures were used to generate the pharmacological data for all receptors shown in Table 2.

RESULTS

To investigate the binding properties of the AT₁ and the AT₂ receptor subtypes, saturation binding analyses were conducted for the two receptors using 125I-AngII in the presence and absence of 10 mM DTT. Representative saturation isotherms for the AT₂ receptor, without and with the DTT treatment, are shown in Figure 1A. The AT₁ and AT₂ receptors exhibited dramatic differences in AngII binding in the presence of DTT (Table 1); specific binding was completely abolished in the AT₁ receptor by the addition of DTT, whereas the AT2 receptor displayed a significant (P < 0.01), nearly 4-fold increase in its affinity for AngII in the presence of this reducing agent. Within the AT₁ receptor, four extracellular cysteines have been shown to form two sets of disulfide bridges. DTT's disruption of these disulfide bonds has been hypothesized to be the basis of AT₁'s decreased ligand binding by this reducing agent. Interestingly, these same four extracellular cysteines are also conserved in the AT₂ subtype. To evaluate the role of these

Table 1: Binding Affinity (K_d) of Angiotensin II for Wild-Type and Mutated Angiotensin II Type 2 Receptors^a

receptor	$K_{\rm d}$ (AngII)	$K_{\rm d}$ (AngII + 10 mM DTT)
AT ₁ wild type	$5.3 \pm 1.4 (n = 3)$	no specific binding $(n = 3)$
AT ₂ wild type	$3.4 \pm 0.4 (n = 8)$	$0.9 \pm 0.7 (n=7)^{b}$
AT ₂ C35A	$1.8 \pm 0.3 (n = 6)$	$0.6 \pm 0.1 \ (n=5)^b$
AT ₂ C117A	$13.7 \pm 0.7 (n = 3)^c$	$1.0 \pm 0.3 \ (n=3)^b$
AT ₂ C195A	$12.0 \pm 2.1 \ (n=3)^c$	$3.4 \pm 0.4 (n=3)^{b,d}$
AT ₂ C290A	$2.0 \pm 0.4 (n = 7)$	$0.8 \pm 0.2 (n = 4)$

 a Radioligand binding was measured as described in Experimental Procedures with 30 μg of AT2C35A or AT2C290A or 50 μg of AT2C117A or AT2C195A mutant or 20 μg of wild-type membrane protein and $^{125}\text{I-AngII}$ (ranging from 0.2 to 6 nM) in the presence and absence of 10 mM dithiothreitol (DTT). Nonspecific binding was determined in the presence of 1 μM unlabeled AngII. Data are presented in nanomolar as the means \pm standard error. The number of independent experiments is shown in parentheses. b DTT had a significant effect on binding affinities ($K_{\rm d}$), P < 0.01. c Cysteine mutation had a significant effect on binding compared to wild-type AT2, P < 0.01. d A significant difference in binding affinity after comparing all $K_{\rm d}$'s in the presence of DTT (P < 0.01).

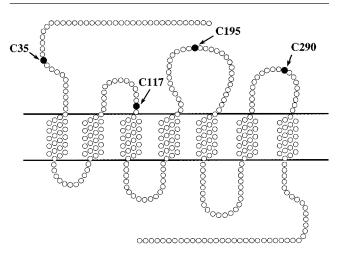


FIGURE 2: Location of the four conserved extracellular cysteines within the AT_2 receptor. Four extracellular cysteine residues (Cys³⁵, Cys¹¹⁷, Cys¹⁹⁵, and Cys²⁹⁰) are conserved in the AngII receptor family and their locations within the AT_2 receptor are shown highlighted in black. Alanine substitutions of these cysteines were created as described in Experimental Procedures.

cysteine residues (Cys35, Cys117, Cys195, and Cys290) with respect to AT₂ receptor binding and this subtype's unique DTT sensitivity, point mutations were constructed by substituting each of the four cysteines with alanines (Figure 2). Binding affinities for ¹²⁵I-AngII in the presence and absence of 10 mM DTT were then determined by saturation binding analysis for each of the four AT2 cysteine mutants and compared to the wild-type receptors. The alanine substitutions resulted in two distinct responses: mutations of either Cys¹¹⁷ or Cys¹⁹⁵ resulted in significant, 4-fold decreases in AngII affinity, whereas substitutions of either Cys³⁵ or Cys²⁹⁰ produced receptors that exhibited small, albeit nonsignificant, 2-fold increases in AngII binding affinities (Table 1). For all four cysteine point mutants, the presence of DTT further enhanced AngII binding, but the extent of this increase varied. The addition of DTT increased AngII binding in mutants of Cys³⁵, Cys¹¹⁷, and Cys²⁹⁰ to K_d values near that of DTT-treated wild-type receptor. Although the Cys¹⁹⁵ mutant did exhibit increased AngII binding when subjected to DTT, this DTT-treated mutant still bound AngII nearly 4-fold less efficiently than a similarly treated wild-type AT_2 receptor (P < 0.01).

Competition binding analysis was also performed on each single point mutant to determine whether the effects of the cysteine mutations extended to other ligands. Ligands tested include AngII, the peptidic antagonist [Sar¹,Ile⁸]angiotensin II (SARILE), the AT₂-selective peptidic agonist CGP42112A, and the AT₂-selective nonpeptide PD123319. A representative competition curve for the wild-type AT₂ receptor is shown in Figure 1B. Overall, the rank order of potency of the four ligands tested remained unchanged by each of the cysteine mutations, indicating that these mutations did not create any large global conformational changes in the ligand binding pocket of the AT₂ receptor (Table 2). However, there were some subtle differences in the effects of the Cys35 and Cys²⁹⁰ mutations on the binding of the peptidic ligands— AngII, SARILE, and CGP42112A—compared to the binding of the nonpeptide antagonist PD123319. Although the changes were not statistically significant, the observed differences in the mutants compared to the wild-type receptor may provide clues to overall structural differences in the manner that peptides and nonpeptides interact with the AT₂ receptor. Both of the Cys35 and Cys290 mutants displayed some enhanced, DTT-like affinity for the peptidic ligands compared the wild-type receptor. In contrast, the affinity for the nonpeptide PD123319 was unaffected by these cysteine mutations. Since Cys35 and Cys290 reside in the amino terminus and the third extracellular loop, respectively, these results further suggested that these extracellular domains may contribute to the unique AT2 property of enhanced ligand binding upon DTT treatment. Collectively, the saturation binding analyses combined with the competition binding analyses suggest that mutating the extracellular cysteines affects overall ligand binding in the AT₂ receptor and that these residues may be categorized on the basis of similarity of effects into two distinct pairs, with one set comprised of Cys³⁵ and Cys²⁹⁰ and another consisting of Cys¹¹⁷ and Cys¹⁹⁵.

One possibility for the two sets of cysteines is that the residues within each set form a disulfide bridge, with Cys³⁵ linked to Cys²⁹⁰ and Cys¹¹⁷ linked to Cys¹⁹⁵. Thus, to test this possibility, double cysteine mutants (AT₂C35A/C290A and AT₂C117A/C195A) were formed by splicing the single point mutants into appropriate combinations. Saturation binding analysis with ¹²⁵I-AngII was then performed to compare the binding properties of the double cysteine mutants to their respective single point mutants as well as to the wild-type AT_2 receptor. If a pair of cysteine residues are involved in a disulfide bond, it is expected that the effect on ligand binding of a double mutation will not be greater than individually mutating each residue of the putative disulfide bond. Alternatively, if the decrease in affinity of such double mutations is cumulative and multiplicative, then it is unlikely that a disulfide bond links the two cysteines. The double mutant AT₂C117A/C195A displayed a similar level of decreased AngII affinity (10.3 \pm 1.7 nM, n = 3, P< 0.01), in agreement with the affinities found for the single point mutants AT₂C117A and AT₂C195A. Similarly, the double mutant AT₂C35A/C290A also showed a comparable, not statistically different, degree of enhanced binding of AngII (2.1 \pm 0.8 nM, n = 5) in comparison to the single mutant counterparts AT₂C35A and AT₂C290A. These results further support the fact that the AT₂ receptor possesses two

Table 2: Competition Binding Analysis for the Binding of AngII, CGP42112A, PD123319, and SARILE to AT₂ Wild-Type and Cysteine Mutants^a

competitor	AT ₂ wild type	AT ₂ C35A	AT ₂ C117A	AT ₂ C195A	AT ₂ C290A
AngII	$3.7 \pm 1.7 (n = 5)$	$1.7 \pm 0.8 (n=4)$	$3.3 \pm 1.1 (n = 4)$	$3.7 \pm 1.1 (n = 3)$	$1.9 \pm 0.5 (n = 3)$
CGP42112A	$0.7 \pm 0.1 \ (n = 5)$	$0.2 \pm 0.04 (n = 3)$	$0.7 \pm 0.2 (n = 4)$	$1.3 \pm 1.1 (n = 3)$	$0.2 \pm 0.03 (n = 3)$
PD123319	$7.6 \pm 1.0 (n = 5)$	$10.7 \pm 1.6 (n = 3)$	$5.0 \pm 1.0 (n = 3)$	$7.5 \pm 6.2 (n = 3)$	$15.2 \pm 1.2 (n = 3)$
SARILE	$1.5 \pm 0.6 (n = 3)$	$0.7 \pm 0.2 (n = 5)$	$0.9 \pm 0.3 (n = 5)$	$3.9 \pm 1.1^b (n = 3)$	$0.7 \pm 0.01 \ (n = 3)$

^a Binding of ¹²⁵I-AngII to cell membranes was determined in the presence of increasing concentrations of unlabeled peptide (AngII, CGP42112A, and SARILE) and nonpeptide (PD123319) ligands as described in Experimental Procedures. The data are expressed as K_i in nanomolar as the means \pm standard error. The number of independent experiments is shown in parentheses. ${}^{b}K_{i}$ for SARILE in AT₂C195A was significantly different compared to the other mutants (P < 0.01).

disulfide bonds, one pairing Cys35 and Cys290 forming a bridge between the amino terminus and the third extracellular loop and another linking Cys¹¹⁷ and Cys¹⁹⁵ connecting the first and second extracellular loops.

Although the results from the AT₂ double point mutants indicated disulfide bond pairings that are identical to those that have been proposed for the AT₁ receptor, the two subtypes exhibit striking differences in their sensitivity to DTT. The basis of the AT_1 and AT_2 differing responses to this reducing agent likely arises from other structural differences. On the basis of the enhanced AngII binding affinity of point mutants AT₂C35A and AT₂C290A, we postulated that elements in either the amino terminus (NT) or the third extracellular loop (ECL3) may be involved in enhancing AngII binding for the AT₂ receptor when disulfide bonds are broken. To test this hypothesis, additional receptor mutants were constructed and their binding affinities for AngII were determined (Figure 3).

Since the AT₂ receptor amino terminus is 16 amino acids longer than that of the AT₁ subtype, a truncation mutation ($[del 1-16]AT_2$) that deleted the first 16 amino acids of the AT₂ receptor was generated. This yielded an AT₂ receptor with an amino terminus of the same length as the AT₁ subtype. Saturation binding analysis demonstrated that the truncated receptor had an affinity for AngII that was not significantly different than that of wild type. Moreover, binding to the truncated receptor in the presence of DTT was unchanged, indicating that removal of the first 16 amino acids weakened the AT2 receptor's response to DTT. To further evaluate the possible contribution of the amino terminus to the differential effects of DTT on binding for the two receptor subtypes, a chimeric receptor ([AT₁NT]-AT₂) was constructed that replaced the AT₂ amino terminus with that of the AT₁. As shown in Table 3, this chimeric exchange weakened the binding of AngII to this chimera in the absence of DTT-[AT₁NT]AT₂ exhibited a small, significant reduction in affinity compared to the wild-type AT₂ receptor. Similarly, in the presence of DTT, AngII binding affinity did increase slightly, though the effect was not statistically significant.

On the basis of the binding properties of the AT₂C290A point mutant, the third extracellular loop was another region that may be involved in the increased AngII binding affinity of the AT₂ subtype when subjected to DTT treatment. Consequently, chimeric receptors were constructed that exchanged the third extracellular domains between the two subtypes, generating [AT₁ECL3]AT₂, an AT₂ receptor with an AT₁ third extracellular loop, and its reciprocal chimera [AT₂ECL3]AT₁ (Figure 3). The [AT₁ECL3]AT₂ chimera bound AngII with wild-type affinity in the absence of DTT,

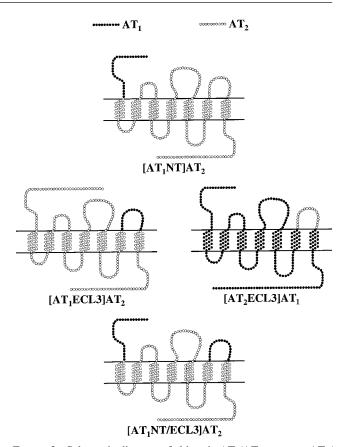
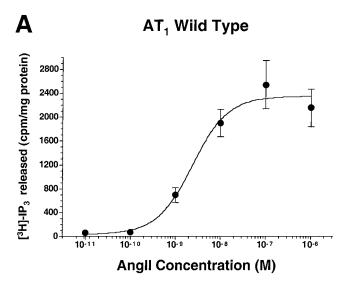


FIGURE 3: Schematic diagram of chimeric AT₁/AT₂ mutants. AT₁/ AT₂ chimeric receptors were constructed as described in Experimental Procedures and shown above. Black indicates AT₁ receptor segments, while white represents AT_2 sequences. $[AT_1NT]AT_2$ is comprised of the AT₁ amino terminus attached to the AT₂ receptor. [AT₁ECL3]AT₂ is an AT₂ receptor containing an AT₁ third extracellular loop. [AT₂ECL3]AT₁ is an AT₁ receptor with an AT₂ third extracellular loop. [AT₁NT/ECL3]AT₂ attaches the AT₁ amino terminus and third extracellular loop onto an AT₂ receptor.

but upon addition of 10 mM DTT this chimera bound AngII with a small, significant decreased in affinity (Table 3). The mirror chimera [AT2ECL3]AT1 did show measurable specific binding of ¹²⁵I-AngII. However, the binding was nonsaturable $(K_{\rm d} > 100 \text{ nM})$ and thereby prohibited precise determination of its expression level and affinity for AngII. Because this chimeric receptor consists of predominately AT₁ receptor sequences, especially in the transmembrane and cytoplasmic domains, the [AT₂ECL3]AT₁ chimera retains key AT₁ structural determinants for proper G-protein coupling and receptor activation. Thus, if the chimera was successfully expressed, it would respond appropriately with an agonist to induce inositol trisphosphate (IP₃) production, a signal transduction pathway that is characteristic of the wild-type

Table 3: Binding Affinity of Angiotensin II for Wild-Type and Chimeric Angiotensin II Type 2 $Receptors^a$

receptor	$K_{\rm d}$ (AngII)	$K_{\rm d}$ (AngII + 10 mM DTT)
AT ₂ wild type	$3.4 \pm 0.4 (n = 8)$	$0.9 \pm 0.7 (n = 7)$
[del 1-16]AT ₂	$4.6 \pm 0.8 (n = 4)$	$3.4 \pm 0.8 (n = 3)$
$[AT_1NT]AT_2$	$8.6 \pm 1.9 (n = 4)^b$	$5.1 \pm 1.7 (n = 4)$
$[AT_1ECL3]AT_2$	$6.2 \pm 0.3 (n = 3)$	$8.8 \pm 0.1 \ (n=3)^c$
[AT ₁ NT/ECL3]AT ₂	$2.2 \pm 1.1 (n = 3)$	$4.8 \pm 1.1 (n = 3)$


 a Radioligand binding was measured as described in Experimental Procedures with 100 μg of [AT₁NT]AT₂ or [AT₁ECL3]AT₂ or 20 μg of wild-type membrane protein and $^{125}\text{I-AngII}$ (ranging from 0.2 to 6 nM) in the presence and absence of 10 mM dithiothreitol (DTT). Nonspecific binding was determined in the presence of 1 μM unlabeled AngII. Data are presented in nanomolar as the means \pm standard error. The number of independent experiments is shown in parentheses. b Statistically significant difference compared to wild-type AT₂ receptor (P < 0.01). c DTT produced a significant decrease in $K_{\rm d}$ (P < 0.01).

 AT_1 receptor. As shown in Figure 4, both the wild-type AT_1 receptor and the [AT₂ECL3]AT₁ chimera clearly demonstrated AngII-induced IP3 turnover. The wild-type receptor exhibited an EC₅₀ value of 2.36 ± 0.40 nM and a maximum stimulation of $[{}^{3}H]IP_{3}$ of 2344 \pm 337 cpm/mg of protein (means \pm SE; n = 3), whereas the chimeric receptor showed an EC₅₀ value of 396 \pm 130 nM and a maximum stimulation of [3 H]IP₃ of 767 \pm 104 cpm/mg of protein (means \pm SE; n = 4). This clear demonstration of AngII-induced IP₃ turnover combined with the detection of specific 125I-AngII binding verified the successful expression and proper insertion into the cell membrane of the [AT₂ECL3]AT₁ chimera. Although determination of its K_d was not possible, determining the effect of DTT on binding was still possible. Single point binding assays were performed in the presence and absence of 10 mM DTT on isolated membranes containing the [AT₂ECL3]AT₁ chimeric receptor. Because the number of binding sites remains unchanged in such an experiment, any increase or decrease in specific binding would respectively indicate enhancement or reduction in affinity for AngII. For the wild-type AT₁ receptor, 10 mM DTT abolished essentially all specific binding (Figure 5A). However, when compared to the [AT₂ECL3]AT₁ chimera, AngII binding only decreased slightly in the presence of DTT (12.9 \pm 0.7 fmol/ mg of protein without DTT, 10.1 ± 0.1 fmol/mg of protein with 10 mM DTT; n = 3), indicating only a very small, significant decrease (P < 0.05) in binding affinity (Figure 5B).

Finally, to assess whether the amino terminus and the third extracellular loop of the AT_2 receptor may work in concert in retaining high-affinity binding of AngII when subjected to DTT, a combination chimera [AT₁NT/ECL3]AT₂ was created by splicing individual chimeric exchange mutants. The resultant chimera added the AT_1 amino terminus and its third extracellular loop onto an AT_2 receptor, and its AngII binding response to DTT was tested. As shown in Table 3, this mutant showed a small, though nonsignificant decrease in affinity for AngII with the addition of 10 mM DTT.

DISCUSSION

Much of the research on elucidating structure—function relationships within the AngII receptor family has focused on the AT₁ receptor. Domains within this subtype that are responsible for ligand binding (7-14), receptor activation (15-17, 20), and G-protein coupling (18, 19) have been

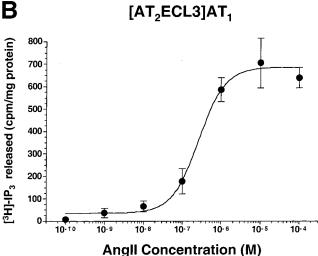


FIGURE 4: Dose—response curves of wild-type AT_1 and chimeric $[AT_2ECL3]AT_1$ receptors to activate intracellular signaling in response to AngII. COS cells were transfected with either (A) wild-type AT_1 receptor or (B) $[AT_2ECL3]AT_1$ receptor and were then later metabolically labeled with $[^3H]$ inositol. After being preloaded with $[^3H]$ inositol, the transfected cells were treated with increasing concentrations of AngII for 30 s. The values reported the means \pm standard error (n = 3 for wild-type AT_1 receptors while n = 4 for $[AT_2ECL3]AT_1$ chimera).

identified. The growing set of AT₁ mutational data has led investigators to propose computer models that illustrate possible molecular mechanisms underlying ligand—receptor interactions (9, 21). In contrast, analogous efforts on the AT_2 subtype have lagged behind. Furthermore, the extent that current AT_1 models are applicable to the AT_2 receptor is unclear due to the surprisingly low level of homology (34%) shared between the two subtypes. Some progress has been made in recent years that has begun to identify AT₂ receptor domains involved in ligand binding and receptor activation, thereby beginning to highlight structural and functional similarities and dissimilarities in the AngII receptor family. Not surprisingly, the two subtypes do share some common AngII binding epitopes. For example, some known AT₁ binding epitopes for AngII have AT₂ homologues, including Lys²¹⁵ in the fifth transmembrane-spanning domain (22), Asp²⁷⁹ and His²⁷³ in the sixth transmembrane-spanning domain (24, 31), and Arg¹⁸² and Asp²⁹⁷ in the extracellular

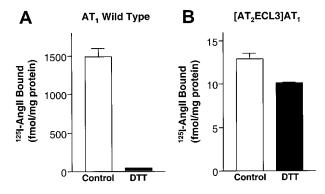


Figure 5: Effect of DTT on 125 I-AngII binding in the [AT₂ECL3]-AT₁ chimera. The [AT₂ECL3]AT₁ chimera is an AT₁ receptor with an AT₂ third extracellular loop. Single point binding assays were performed on membranes from cells transfected with either [AT₂ECL3]AT₁ or wild-type AT₁ receptor in the presence or absence of 10 mM DTT. Binding conditions were as follows: (A) for wild-type AT₁ receptor, 1.4 nM 125 I-AngII with 5 μ g of protein of transfected membranes, and (B) for chimeric receptor, 2.7 nM ¹²⁵I-AngII with 200 μ g of protein of transfected membranes. Specific 125I-AngII binding in the absence (control) or presence of 10 mM DTT in the two receptors is expressed as means \pm standard error from three independent experiments. Each independent experiment paired the control and 10 mM DTT conditions for both the [AT₂ECL3]AT₁ chimera and the wild-type AT₁ receptor.

loops (23). Correspondingly, residues unique to each subtype have been shown to be involved in properties specific to each subtype, such as the binding of subtype-selective ligands (14, 32) and G-protein coupling (18, 33). However, the expected roles of conserved and nonconserved residues within the AngII receptor family are not always straightforward. For example, despite the fact that AT₁ and AT₂ receptors exhibit identical affinities for AngII, not all of the identified AT₁ binding epitopes for this peptide are preserved in the AT₂ receptor. Moreover, chimeric receptor exchanges of AT₁ and AT₂ regions with vastly dissimilar amino acid sequences can still produce mutant receptors that preserve common properties such as high-affinity AngII binding (25). Thus, the role of any AT₂ homologue of key AT₁ residues, identified either by mutagenesis or computer modeling, remains to be established.

The AT₁ and AT₂ receptors share four extracellular cysteine residues, one in the amino terminus and one in each of the three extracellular loops. Yamano and colleagues have demonstrated the importance of these cysteines by substituting each residue with a glycine, which resulted in mutants with 10-fold lower affinity for AngII (8). To identify possible disulfide linkages, further experiments paired specific cysteine mutants and suggested that two distinct disulfide bonds are formed between the cysteines (10). One disulfide bridge, which connects the cysteines in the first and second extracellular loops, is known to be conserved in other GPCRs (34, 35). An additional, uniquely AT₁-specific disulfide bridge was also identified that linked the cysteines in the amino terminus and in the third extracellular loop. Collectively, the mutational data suggest that both disulfide bonds are integral in maintaining the overall protein conformation required for high-affinity ligand binding for the AT₁ receptor. Moreover, the well-known inhibition of AT₁ binding activity by the reducing agent DTT further supports the postulated role of the AT₁ disulfide bonds; DTT would break the disulfide bridges and thereby disrupt AT₁ binding (10). Paradoxically, despite conservation of the same four extracellular cysteine residues in the AT₂ receptor (Figure 2), DTT enhanced AngII binding for this subtype by approximately 4-fold (Table 1). Although the increase in binding affinity was modest, it was especially striking when compared to DTT's profound effects on the AT₁ receptor, where DTT completely abolished any specific binding of AngII. Thus, the extent that the AT₁ cysteine mutation data are applicable to the AT2 subtype remained unclear.

We also chose to use a mutational approach to investigate the role of the conserved extracellular cysteines within the AT₂ receptor with respect to this subtype's unique DTT sensitivity and potential disulfide bond pairings. This mutational strategy has been extensively employed for many G-protein-coupled receptors (34-37) in addition to the AT₁ receptor (10). It is important to note that this approach, as is for all mutational strategies, is an indirect method for assigning disulfide pairings. Thus, while it is commonly expected that the effect on ligand binding of a double mutation of cysteines paired in a disulfide bond would not be greater than mutating each individual residue, the indirect nature of mutagenesis does not discount the possibility that regional conformational changes due to the mutational substitution itself could alter ligand binding affinities in a manner unrelated to disruption of a putative disulfide bond.

In characterizing AT₂ cysteine mutants, two distinct responses were observed. One response involved mutations of either Cys¹¹⁷ or Cys¹⁹⁵, which respectively reside in the first and second extracellular loops (Figure 2). Alanine substitutions of either of these residues yielded receptors with an approximately 4-fold lower affinity for AngII compared to the wild-type receptor. A similar 4-fold decrease in AngII binding was exhibited by the double point mutant AT₂C117A/C195A, indicating that these two cysteines are likely paired in a disulfide bond. As discussed above, this particular disulfide bond is preserved not only in the AT₁ receptor but also in other GPCRs where this linkage is critical for high-affinity ligand binding (34, 35). Although the effects of AT2's Cys¹¹⁷ or Cys¹⁹⁵ mutations were not as large as observed for equivalent AT₁ mutants, this particular AT₂ disulfide bond appears to play an analogous role in maintaining proper conformation of the ligand binding pocket. When DTT was added to the binding experiments, thereby disrupting any disulfide bonds, both cysteine mutants still retained the AT₂-like response of enhanced ligand binding, although the extent of this increased affinity varied. AT₂C117A response to DTT treatment was comparable to similarly treated wild-type receptor. The effect of DTT on AT₂C195A, however, was somewhat less. One possibility is that subtle, local conformational changes may have been directly caused by the amino acid substitution itself of Cys¹⁹⁵, thus preventing the mutant from displaying a full AT₂-like response to DTT. Still, since both cysteine mutants continued to exhibit significant DTT-induced increases in ligand binding to levels comparable to DTT-treated AT₂, Cys¹¹⁷ and Cys¹⁹⁵ or other elements contained in their respective extracellular domains are unlikely to be the source of the distinct AT₂ response to DTT. In contrast, alanine substitutions of Cys³⁵ or Cys²⁹⁰ slightly elevated receptor affinity about 2-fold for AngII (Table 1). DTT further enhanced AngII binding for these single point mutants to levels comparable to those of the similarly treated wild-type AT₂ receptor. The double mutant $AT_2C35A/C290A$ also showed an identical level of increased AngII binding and thereby indicated that these two cysteines are likely joined in a disulfide bond. Collectively, our mutational experiments indicated that these four conserved residues form identical disulfide bridges in both the AT_1 and the AT_2 receptor subtypes.

The two AngII receptor subtypes exhibit dramatic differences in ligand binding when exposed to DTT, which breaks all disulfide bonds. Since the extracellular cysteines form identical disulfide bridges for both AngII receptor subtypes, other elements unique to the AT₂ receptor protein must exist and permit this subtype to maintain high-affinity binding when exposed to DTT. Although the magnitude of the observed increases in AngII binding induced by any mutations of Cys³⁵ and Cys²⁹⁰ did not completely approach the levels induced by DTT treatment, the enhancing effects of these mutations were reflective of the customary AT₂ response to DTT (whereas mutations of Cys¹¹⁷ and Cys¹⁹⁵ were not). This qualitative difference suggests that components within the extracellular domains where these cysteines reside may be partly responsible for AT₂'s response to DTT. In addition, competition analysis of Cys³⁵ and Cys²⁹⁰ mutants demonstrated that these small increases in affinity apply only to peptidic ligands, i.e., AngII, SARILE, and the AT₂-specific CGP42112A, and not to the nonpeptide AT₂ antagonist PD123319 (Table 2). These observations appear to be consistent with the hypothesis that larger peptidic ligands are more likely to interact with the extracellular domains of the receptor, whereas the binding of smaller nonpeptides such as PD1233219 are situated more deeply within the transmembrane-spanning domains and would thereby remain immune to mutations of extracellular residues. Indeed, binding epitopes within the AT₂ receptor have been mapped to extracellular domains with respect to AngII (23, 25) and to CGP42112A (32). Since Cys³⁵ and Cys²⁹⁰ reside within the amino terminus and the third extracellular loop of the AT₂ receptor, respectively, we began to explore the possible contributions of these extracellular domains in the AT₂ DTT

To examine the possible role of the AT₂ amino terminus, two mutational changes were introduced. First, because the AT2 amino terminus is 16 amino acids longer than that of the AT₁ receptor, the AT₂ amino terminus was truncated to the same length as that of the AT_1 receptor. Binding analysis revealed that the truncated receptor retained near wild-type affinity for AngII as well as some, though not statistically significant, AT₂-like DTT responsiveness. Second, a chimeric receptor [AT₁NT]AT₂, consisting of replacing the AT₂ amino terminus with that of the AT₁, was constructed to evaluate possible DTT effects on the amino-terminal cysteine in the context of native AT₁ receptor residues. This chimeric receptor bound AngII with high affinity and continued to exhibit a small, though not statistically significant, DTT enhanced binding. Overall, both amino-terminal mutants showed some blunting in the DTT enhancement of binding. Thus, this extracellular domain may only contribute slightly toward AT2's response to DTT. To investigate the role of the third extracellular loop, chimeric receptors were created that exchanged this domain between the two subtypes. Although the [AT₁ECL3]AT₂ chimera, which replaced an AT₂ receptor's third extracellular loop with an analogous part of the AT₁ protein, possessed wild-type affinity for AngII, the presence of 10 mM DTT resulted in a slight, statistically significant decrease in AngII binding affinity (Table 3). Qualitatively, this DTT response was more AT₁-like than AT₂-like. The reciprocal chimera [AT₂ECL3]AT₁ also demonstrated a very small, statistically significant decrease in binding affinity when subjected to DTT. However, because 10 mM DTT completely abolishes all specific binding for the wild-type AT_1 receptor (Table 1), it is especially noteworthy that any specific binding was measured in DTTtreated [AT₂ECL3]AT₁, a chimera that is primarily composed of AT₁ receptor sequences. Taken together, the chimeric exchanges of the third extracellular loops suggest that, for the AT₂ receptor, this domain may contribute to this subtype's unique response to DTT. Finally, to evaluate whether the amino terminus and the third extracellular loop of the AT₂ receptor may work synergistically in retaining high-affinity AngII binding when subjected to DTT, a combination chimera [AT₁NT/ECL3]AT₂ was evaluated. The resultant chimera, with an AT₁ amino terminus and an AT₁ third extracellular loop attached to an AT₂ receptor, showed a slightly decreased affinity for AngII with the addition of DTT; i.e., this chimera was also beginning to lose the AT₂like property of enhanced ligand binding when subjected to DTT.

In summary, our mutagenesis data indicate that for both AngII subtypes the conserved extracellular cysteine residues form two identical disulfide bonds: one that connects the first and second extracellular loops and another that links the amino terminus to the third extracellular loop. The mutational data and the resulting assignments of disulfide bridges, however, can benefit from future biochemical mapping experiments, which can more directly determine free and paired cysteine residues within the AngII receptor subtypes. Still, despite possessing identical pairs of disulfide bonds, the two subtypes exhibit strikingly different binding properties when these bonds are broken by DTT treatment. Because DTT greatly inhibits AT₁ receptor binding, the disulfide bonds maintain the ligand binding pocket and preserve high-affinity binding of peptidic ligands by forming necessary constraints on the extracellular domains of this subtype. In contrast, the AT2 receptor displays a modest increase in AngII binding when exposed to DTT. For this subtype, the same disulfide bonds also restrict the extracellular domains. However, when the disulfide bonds are disrupted by DTT, other compensatory elements within the AT₂ receptor protein are uncovered and help to maintain, or even enhance, this receptor's binding activity. Our experiments suggest that the AT2 disulfide bridges are of two distinct types: the link between Cys117 and Cys195 (respectively in the first and second extracellular loops) is AT₁like in that its disruption results in decreased ligand binding, whereas the bond between Cys35 and Cys290 (respectively in the amino terminus and third extracellular loop) may mask latent peptide binding epitopes that are uncovered upon disruption of this disulfide bridge. These latent binding epitopes permit the AT₂ receptor to continue to bind peptidic ligands with a slightly higher affinity when all disulfide bonds are broken through DTT treatment. Further experiments indicate that some of these latent ligand binding epitopes may reside within the third extracellular loop of the AT₂ subtype. Other possible elements within the AT₂ amino terminus may also offer only small contributions when the disulfide bonds are broken. These experiments represent our continuing efforts to identify the structural determinants that define AT_2 receptor binding and function and determine the extent that current AT_1 models are applicable to the AT_2 subtype. Comparing and contrasting AT_1 and future AT_2 models may establish a greater understanding of the molecular properties of the entire AngII receptor family.

ACKNOWLEDGMENT

The authors acknowledge the technical assistance of Dr. Laiyi Luo.

REFERENCES

- 1. Peach, M. J. (1977) Physiol. Rev. 57, 313-370.
- Chiu, A. T., Herblin, W. F., McCall, D. E., Ardecky, R. J., Carini, D. J., Duncia, J. V., Pease, L. J., Wong, P. C., Wexler, R. R., Johnson, A. L., and Timmermans, P. B. M. W. M. (1989) Biochem. Biophys. Res. Commun. 165, 196–203.
- Murphy, T. J., Alexander, R. W., Griendling, K. K., Runge, M. S., and Bernstein, K. E. (1991) *Nature 351*, 233–236.
- Sasaki, K., Yamano, Y., Bardhan, S., Iwai, N., Murray, J. J., Hasegawa, M., Matsuda, Y., and Inagami, T. (1991) *Nature* 351, 230-233.
- Kambayashi, Y., Bardhan, S., Takahashi, K., Tsuzuki, S., Inui, H., Hamakubo, T., and Inagami, T. (1993) *J. Biol. Chem.* 268, 24543-24546.
- Nakajima, M., Mukoyama, M., Pratt, R. E., Horiuchi, M., and Dzau, V. J. (1994) Biochem. Biophys. Res. Commun. 197, 393–399.
- Hjörth, S. A., Schambye, H. T., Greenlee, W. J., and Schwartz, T. W. (1994) J. Biol. Chem. 269, 30953-30959.
- Yamano, Y., Ohyama, K., Chaki, S., Guo, D.-F., and Inagami, T. (1992) Biochem. Biophys. Res. Commun. 187, 1426-1431.
- 9. Yamano, Y., Ohyama, K., Kikyo, M., Sano, T., Nakagomi, Y., Inoue, Y., Nakamura, N., Morishima, I., Guo, D. F., Hamakubo, T., and Inagami, T. (1995) *J. Biol. Chem.* 270, 14024–14030.
- Ohyama, K., Yamano, Y., Sano, T., Nakagomi, Y., Hamakubo, T., Morishima, I., and Inagami, T. (1995) Regul. Pept. 57, 141–147.
- Feng, Y.-H., Noda, K., Saad, Y., Liu, X.-P., Husain, A., and Karnik, S. (1995) J. Biol. Chem. 270, 12846–12850.
- Growblewski, T., Maigret, B., Larguier, R., Lombard, C., Bonnafous, J.-C., and Marie, J. (1997) *J. Biol. Chem.* 272, 1822–1826.
- Noda, K., Saad, Y., Kinoshita, A., Boyle, T. P., Graham, R. M., Husain, A., and Karnik, S. S. (1995) *J. Biol. Chem.* 270, 2284–2289.
- 14. Ji, H., Zheng, W., Zhang, Y., Catt, K. J., and Sandberg, K. (1995) *Proc. Natl. Acad. Sci. U.S.A.* 92, 9240–9244.

- Noda, K., Saad, Y., and Karnik, S. S. (1995) J. Biol. Chem. 270, 28511–28514.
- 16. Noda, K., Feng, Y.-H., Liu, X.-P., Saad, Y., Husain, A., and Karnik, S. S. (1996) *Biochemistry 35*, 16435–16442.
- 17. Balmforth, A. J., Lee, A. J., Warburton, P., Donnelly, D., and Ball, S. G. (1997) *J. Biol. Chem.* 272, 4245–4251.
- Ohyama, K., Yamano, Y., Chaki, S., Kondo, T., and Inagami, T. (1992) Biochem. Biophys. Res. Commun. 189, 677–683.
- 19. Wang, C. L., Jayadev, S., and Escobedo, J. A. (1995) *J. Biol. Chem.* 270, 16677–16682.
- Bihoreau, C., Monnot, C., Davies, E., Teutsch, B., Bernstein, K. E., Corvol, P., and Clauser, E. (1993) *Proc. Natl. Acad. Sci. U.S.A.* 90, 5133-5137.
- Joseph, M. P., Maigret, B., Bonnafous, J. C., Marie, J., and Scheraga, H. A. (1995) *J. Protein Chem.* 14, 381–398.
- 22. Yee, D. K., Kisley, L. R., Heerding, J. N., and Fluharty, S. J. (1997) *Mol. Brain Res.* 51, 238–241.
- 23. Heerding, J. N., Yee, D. K., Jacobs, S. L., and Fluharty, S. J. (1997) *Regul. Pept.* 72, 97–103.
- Heerding, J. N., Yee, D. K., Krichavsky, M. Z., and Fluharty,
 S. J. (1998) Regul. Pept. 74, 113-119.
- Yee, D. K., Heerding, J. N., Krichavsky, M. Z., and Fluharty,
 S. J. (1998) *Mol. Brain Res.* 57, 325–329.
- Yee, D. K., He, P., Yang, X.-D., Reagan, L. P., Hines, J., Siemens, I. R., and Fluharty, S. J. (1997) *Mol. Brain Res.* 45, 108–116.
- 27. Horton, R. M., Ho, S. N., Pullen, J. K., Hunt, H. D., Cai, Z., and Pease, L. R. (1993) *Methods Enzymol.* 217, 270–279.
- He, P. F., Yang, X. D., Guo, Y. F., Reagan, L. P., Yee, D. K., and Fluharty, S. J. (1994) Soc. Neurosci. Abstr. 20, 220.10 (Abstract).
- Fluharty, S. J., and Reagan, L. P. (1989) J. Neurochem. 52, 1393–1400.
- Berridge, M. J., Downes, C. P., and Hanley, M. R. (1982) Biochem. J. 206, 587-592.
- Turner, C. A., Cooper, S., and Pulakat, L. (1999) Biochem. Biophys. Res. Commun. 257, 704-707.
- 32. Hines, J., Heerding, J. N., Fluharty, S. J., and Yee, D. K. (2001) J. Pharmacol. Exp. Ther. (in press).
- 33. Kang, J., Richards, E. M., Posner, P., and Sumners, C. (1995) *Am. J. Physiol.* 268, C278–C282.
- 34. Fraser, C. M. (1989) J. Biol. Chem. 264, 9266-9270.
- 35. Dohlman, H. G., Caron, M. G., DeBlasi, A., Frielle, T., and Lefkowitz, R. J. (1990) *Biochemistry* 29, 2335–2342.
- Savarese, T. M., Wang, C.-D., and Fraser, C. M. (1992) J. Biol. Chem. 267, 11439–11448.

BI002805P